Name \qquad Date \qquad

1. Write the products into the squares as fast as you can.

1×1	2×1	3×1	4×1	5×1	6×1	7×1	8×1
1×2	2×2	3×2	4×2	5×2	6×2	7×2	8×2
1×3	2×3	3×3	4×3	5×3	6×3	7×3	8×3
1×4	2×4	3×4	4×4	5×4	6×4	7×4	8×4
1×5	2×5	3×5	4×5	5×5	6×5	7×5	8×5
1×6	2×6	3×6	4×6	5×6	6×6	7×6	8×6
1×7	2×7	3×7	4×7	5×7	6×7	7×7	8×7
1×8	2×8	3×8	4×8	5×8	6×8	7×8	8×8

a. Color all the squares with even products orange. Can an even product ever have an odd factor?
b. Can an odd product ever have an even factor?
c. Everyone knows that $7 \times 4=(5 \times 4)+(2 \times 4)$. Explain how this is shown in the table.
d. Use what you know to find the product of 7×16 or 8 sevens +8 sevens.

a. Label each product on the diagonal.
2. In the table, only the products on the diagonal are shown.

two arrays have been done for you.

c. What pattern do you notice in the number of squares that are added to each new array?
d. Use the pattern you discovered in Part (b) to prove this: 9×9 is the sum of the first 9 odd numbers.

